Appendix R. Dose and Dose Ratio Estimations

R-1. Dose Estimation

Three scenarios were selected for exposure dose analysis: residential, occupational, and recreational. Assumptions regarding exposures for these scenarios are based on EPA guidelines and are listed in Table R-1.

Dose analysis was carried out using concentration data or estimated concentrations (e.g., for air). Concentrations in air were estimated from air dispersion modeling (Appendices I and S). The Risk Assessment Information System (RAIS) was first used to screen all offsite contaminant concentrations (Appendix H; offsite monitored surface water, groundwater, and soil concentrations). Only contaminant concentrations that resulted in dose levels above EPA-suggested standards (e.g., as determined based on cancer risk exceeding 10⁻⁶ and Hazard Indices exceeding unity for systemic diseases) were considered for further analysis. Contaminant concentrations (from monitoring data for offsite groundwater, surface water, and soil) that exceeded health-based standards or guidelines are provided in Appendix N, with the corresponding detection levels provided in Appendix H and Table R-2. Air inhalation doses are given in Appendix T. Exposure doses and dose ratios were estimated for recreational, occupational, and residential exposure scenarios. The estimated potential air exposure (inhalation) doses were divided by the Average Lifetime Acceptable Daily Dose (ALADD) to derive dose ratios, which were used to compare conservative exposure scenarios for chemical and location screening purposes. ALADDs were calculated as follows:

Carcinogens: ALADD = 1×10^{-6} cancer risk / EPA's cancer potency factor Systemic contaminants: ALADD = EPA's reference dose

Specific health-based standards or guidelines for the ALADD calculations are listed in Table R-3, and the ALADD values are given in Table R-4. Dose ratios exceeding unity are presented in Table R-5.

R-2. Estimations of Doses from Exposure to Contaminated Offsite Soil and Groundwater

Exposure pathways for the various scenarios were as follows:

- Residential: (1) soil ingestion, (2) ingestion of edible crops, (3) groundwater ingestion,^{R-1} (4) groundwater dermal contact while showering, (5) groundwater inhalation during household use,^{R-2} and (6) surface water dermal contact.
- Recreational: (1) soil ingestion, (2) groundwater ingestion, and (3) surface water dermal contact.
- Occupational: (1) soil ingestion and (2) groundwater ingestion.

^{R-1} Groundwater ingestion, inhalation, or contact would only apply to residents or workers using water that taps into a private well which uses groundwater as a source. This condition applies to residential scenarios 3, 4, and 5, residential scenario 2, and occupational scenario 2.

^{R-2} "Household use" refers to cleaning, mopping, etc., with private well water (see footnote 1).

Medium	Pathway		Scenario								
			Recreational	Occu	pational	Re	sidential				
		Dose Eqn	Exposure Assumptions	Dose Eqn	Exposure	Dose Eqn	Exposure Assumptions				
					Assumptions						
SW	Dermal contact	$(C \times CF \times PC \times SA \times ET \times EF \times ED) / (AT \times BW)$	C = SW conc. (mg/L) CF = 1 m/100 cm \times 1000 L/m ³ PC = chem. spec. permeab. factor (cm/h) SA = 1.94 m ² ET = 1 h/d; EF = 45 d/yr	NA		$\begin{array}{l} (C \times CF \times PC \times SA \times ET \times \\ EF \times ED) / \\ (AT \times BW) \end{array}$	C = SW conc. (mg/L) CF = 1 m/100 cm \times 1000 L/m ³ PC = chem. spec. permeab. factor (cm/h); EF = 45 d/yr SA = 1.94 m ² ; ET = 1 h/d				
Soil	Ingestion	$\begin{array}{l} (C \times FI \times EF \times \\ ET \times CF \times ED \\ \times IR) / (AT \times \\ BW) \end{array}$	C = soil conc. (mg/kg) FI = fraction ingested (1) EF = 75 d/yr; ET = 1 hr/d; CF = 1 d/24 hr IR = 0.0001 kg/d	$(C \times FI \times EF \times ED \times IR) / (AT \times BW)$	C = soil conc. (mg/kg) FI = fraction ingested (1) EF = 225 d/yr IR = 0.0001 kg/d	$(C \times FI \times EF \times ED \times IR) / (AT \times BW)$	C = soil conc. (mg/kg) FI = fraction ingested (1) EF = 350 d/yr; IR = 0.0001 kg/d				
	Vegetable ingestion	NA		NA		$(C \times BUF \times FI \times IR \times EF$ $\times ED) / (AT \times BW)$	C = soil conc. (mg/kg)* BUF = chem. spec. soil to plant biouptake factor FI = fraction ingested (0.4) IR= 0.2 kg/d; EF = 350 d/yr				
GW	Ingestion	$(C \times IR \times EF \times ET \times ED) / (AT \times BW)$	C = conc. in GW (mg/L) IR = 0.05 L/d EF = 45 d/yr; ET = 1 hr/d	$(C \times IR \times EF \times ED) / (AT \times BW)$	C = conc. in GW (mg/L) IR = 0.8 L/d EF = 225 d/yr	$(C \times IR \times EF \times ED) / (AT \times BW)$	C = conc. in GW (mg/L) IR = 2 L/d; EF = 350 d/yr				
	Indoor inhalation	NA		NA		$(C \times IR \times K \times EF \times ED) / (AT \times BW)$	C = conc. in GW (mg/L) K = $0.0005 \times 1000 \text{ L/m}^3$ EF = 350 d/yr ; IR = $20 \text{ m}^3/\text{d}$				
	Dermal contact during showering	NA		NĀ		$(C \times \overline{CF} \times PC \times ET \times SA \times ED \times EF) / (AT \times BW)$	C = conc. in GW (mg/L) CF = 1 m/100 cm \times 1000 L/m ³ PC = chem. spec permeab. factor ET = 0.24 h/d SA = 1.94 m ² ; EF = 350 d/yr				

Table R-1. Deviation from the General Equation Where Applicable

Notes: Eqn = equations; SW = surface water; S = soil; GW = groundwater; C = contaminant concentration; CF = unit conversion factors; PF = permeability factor (chemical-specific; see Table R-4); SA = skin surface area (EPA, 1992); ET = exposure time (EPA, 1992); EF = exposure frequency (EPA, 1991a–c); ED = exposure duration (30 yr) (EPA, 1991a–d); AT = averaging time (365 d/yr × ED for non-carcinogens, 365 d/yr × 70 yr for carcinogens) (EPA, 1989b–d, 1991a–d); BW = body weight (70 kg) (EPA, 1991a–c); FI = fraction ingested (Exposure Factors Handbook, EPA, 1995); IR = intake rate (EPA, 1995b); BUF = plant biouptake factors, which is the ratio of contaminant concentration in a plant to the contaminant concentration in soil; represents the amount fraction of contaminant in soil uptake by the plant [(mg/kg) / (mg/kg) = unitless]; K = volatilization factor (0.0005 × 1000 L/m³) (EPA, 1991a–c); NA = not applicable. * Ingestion of vegetables from groundwater contamination calculated directly from RAIS. *All chemical-specific factors were taken from the EPA Web site: http://rais.ornl.gov/homepage/rap_tool.shtml*.

Contaminant	Medium		Detection Locati	on
		South	East	North
Lead	S (mg/kg)	383		280
	GW (mg/L)		0.05-2.239	
Beryllium	S (mg/kg)	500-1000		
	SW (mg/L)			0.005-0.008
	GW (mg/L)		0.007-0.123	
Arsenic	S (mg/kg)	1–14		8.2–24
	GW (mg/L)		0.0727-3.217	
Manganese	GW (mg/L)		0.39–35	
Chloromethane	GW (mg/L)			0.019
TCE	GW (mg/L)			0.01-0.9
Vinyl chloride	GW (mg/L)			0.064
Benzene	GW (mg/L)			0.0038
	SW (mg/L)			0.0056
Carbon tetrachloride	GW (mg/L)			0.0045
1,1-DCE	GW (mg/L)			0.019
Cis-1,2-DCE	GW (mg/L)			0.027-0.63
DEHP	SW (mg/L)			0.066-0.17
PCB	SW (mg/L)			0.092-0.12
Perchlorate	GW (mg/L)			0.004-0.15
	V (mg/kg)		32–57	

 Table R-2. Offsite Monitored Concentrations and Detection Locations Used to Estimate

 Doses and Dose Ratios

Notes: SW = surface water; GW = groundwater; S = soil; V = vegetation.

		Systemic Reference Doses (RfD)		Can	cer Potency Fa	Biouptake Factors			
Chemical	Target Organ	Oral RfD mg/kg-d	Inhalation RfD mg/kg-d	Dermal RfD mg/kg-d	Oral PF Risk per mg/kg-d	Inhalation PF Risk per mg/kg-d	Dermal PF Risk per mg/kg-d	k cm/h	Soil to Plant (Wet) Uptake
Arsenic	Skin	3.0E04	_	1.23E-04	1.5	15.1	3.66	1.93E-03	0.01
Benzene	Blood	4.0E-03	8.57E-03	3.8E-03	0.055	0.0273	0.0567	2.07E-02	0.47
Beryllium	Lung	2.0E-03	5.71E-06	2.0E-05	4.3	8.4	430	6.60E-04	0.0025
1,3-Butadiene	CNS		5.71E-04	_	_	0.105		2.31E-02	0.53
Cadmium	Lung	5.0E-04	_	5.0E-06		6.3		3.50E-04	0.14
Carbon tetrachloride	Liver	7.0E-04	—	4.5E-04	0.13	0.0525	0.2	2.24E-02	0.18
Chloromethane	Liver		2.57E-02	_	0.013	0.0063	0.0163	4.15E-03	2.3
Chromium VI particulates	Lung	3.0E-03	2.86E-05	6.0E-05	_	42		1.00E-03	0.0001
1,1-DCA	Liver	1.0E-01	1.43E-01	1.0E-01	—			8.86E-03	0.7
1,2-DCA	Liver	—	—	_	0.091	0.091	0.091	5.34E-03	1.0
1,1-DCE	Liver	5.0E-02	5.71E-02	5.0E-02	0.6	0.175	0.6	1.59E-02	0.7
1,2-DCE (mixed)	Liver	9.0E-03	—	7.2E-03		_	_	1.49E-02	4.1
Cis-1,2-DCE	Liver	1.0E-02	—	1.0E-02	—			1.49E-02	0.61
Trans-1,2-DCE	Liver	2.0E-02	—	2.0E-02	—	_		1.49E-02	4.1
UDMH	Liver		—		3	17.2	6.0	1.17E-04	3.5
DEHP	Liver	2.0E-02	—	3.8E-03	0.014		0.0737	1.97E+00	0.011
Hydrazine	Liver	—	—		3	17.2	6.0	4.12E-05	130
Lead	CNS							3.42E-04	0.0007
Manganese	Thyroid	4.6E-02	1.43E-05	1.84E-03				1.28E-03	0.069
Mercury	CNS		8.57E-05	_	_			3.14E-04	0.3
MMH	Liver		—		3	17.2	6.0	1.79E-04	31
Nickel	All	2.0E-02	—	5.4E-03		_	_	3.29E-04	0.05
NDMA	Liver	8.0E-06	—	4.0E-06	51	49	102	2.65E-04	16
Perchlorate	Thyroid	7.0E-04						8.00E-05	
PCB	All		—	_	2	2	2.22	9.22E-01	0.0025
Toluene	CNS	2.0E-01	1.14E-01	1.6E-01				4.53E-02	0.21
TCE	Liver	3.0E-04	1.14E-02	4.5E-05	0.4	0.4	2.67	1.57E-02	0.31
Vinyl chloride	Liver	3.0E-03	2.86E-02	3.0E-03	1.4	0.0308	1.4	1.13E-02	1.2
Zinc	Enzyme	3.0E-01		6.0E-02				3.42E-04	0.26

Table R-3. Chronic Systemic Reference Doses, Chronic Cancer Potency Factors, and Biouptake Factors for Dose Ratio Evaluations

Notes: All health standards and chemical-specific factors were taken from the EPA Web site: http://risk.lsd.ornl.gov/homepage/rap_tool.shtml. **k** = permeability factor.

Table R-4. Acceptable Lifetime Average Daily Doses (mg/kg-d) as Determined from Reference Doses and Cancer Potency Factors (for 1×10^{-6} risk or one cancer per one million people)

Contaminant	Dermal	Oral ALADD	Inhalation		
	ALADD		ALADD		
Arsenic	2.73×10 ⁻⁷	6.67×10 ⁻⁷	6.6×10 ⁻⁸		
Benzene	1.76×10^{-5}	1.8×10^{-5}	3.66×10 ⁻⁵		
Beryllium	2.0×10 ⁻⁹	2.33×10 ⁻⁷	1.19×10 ⁻⁷		
Carbon	5.0×10 ⁻⁶	7.6×10 ⁻⁶	1.9×10^{-5}		
tetrachloride					
Chloromethane	6.14×10 ⁻⁵	7.69×10 ⁻⁵	1.59×10 ⁻⁴		
Cis 1,2-DCE	1.0×10 ⁻²	1.0×10 ⁻²			
1,1-DCE	1.667×10^{-6}	1.67×10 ⁻⁶	5.7×10 ⁻⁶		
DEHP	1.36×10 ⁻⁵	7.14×10 ⁻⁵			
Lead		—			
Manganese	1.84×10^{-3}	4.6×10 ⁻²	1.43×10 ⁻⁵		
PCB	4.5×10 ⁻⁷	5.0×10 ⁻⁷	5.0×10 ⁻⁷		
Perchlorate		7.0×10 ⁻⁴			
TCE	3.75×10 ⁻⁷	2.5×10 ⁻⁶	2.5×10^{-6}		
Vinvl chloride	7.14×10^{-7}	7.14×10^{-7}	3.25×10^{-5}		

Note: ALADDs were calculated from reference doses for manganese, perchlorate, and cis-1,2-DCE.

Chemical	Location	Medium	Pathway	Scenario						
			-	Recreation	onal	Occupational		Resider	ntial	
				Dose (mg/kg-d)	Dose	Dose	Dose	Dose (mg/kg-d)	Dose Ratio	
					Ratio	(mg/kg-d)	Ratio			
Lead	South	S	Ingestion		See Lead	Spread ¹ results fo	r residentia	al concerns (Table R-7)		
	East	GW	Ingestion							
	North	S	Ingestion							
Arsenic	South	S	Ingestion	5.0×10^{-9} to 7.0×10 ⁻⁸	<1	3.8×10^{-7} to 5.3×10^{-6}	1 to 8	5.9×10^{-7} to 8.2×10^{-6}	1 to 12	
			Veg. ing.	_				4.7×10^{-6} to 6.6×10^{-5}	7 to 99	
	North	S	Ingestion	4.1×10 ⁻⁸ to 1.2×10 ⁻⁷	<1	1.0×10 ⁻⁶ to 3.0×10 ⁻⁶	2 to 5	4.8×10 ⁻⁶ to 1.4×10 ⁻⁵	7 to 21	
			Veg. ing.					3.9×10 ⁻⁴⁵ to 1.1×10 ⁻⁴	58 to 170	
Chloromethane	North	GW	Ingestion	7.2×10 ⁻⁷	<1	5.7×10 ⁻⁵	1	2.2×10 ⁻⁴	3	
			Inhalation	—				1.1×10 ⁻³	7	
			Dermal	—				2.2×10 ⁻⁶	<1	
			Veg. ing.	—				8.4×10^{-4}	11	
TCE	Northeast	GW	Ingestion	3.8×10 ⁻⁷ to 3.4×10 ⁻⁵	0 to 14	3.0×10^{-5} to 2.7 × 10^{-3}	12 to 1,100	1.2×10^{-4} to 1.1×10^{-2}	48 to 4,200	
			Inhalation		_		_	5.9×10^{-4} to 5.3×10^{-2}	230 to 21,000	
			Dermal			_		4.5×10^{-6} to 4.0×10^{-4}	12 to 1,000	
			Veg. ing.	_	_	_	—	1×10^{-4} to 1×10^{-2}	44 to 4,000	
Vinyl chloride	Northeast	GW	Ingestion	2.4×10 ⁻⁶	3	2.0×10 ⁻⁴	270	7.5×10^{-4}	1,100	
			Inhalation	—	_		_	3.8×10 ⁻³	120	
			Dermal	—	—		_	2.1×10 ⁻⁵	29	
			Veg. ing.			_	—	1.7×10 ⁻³	2,400	
Perchlorate*	North	GW	Ingestion	3.5×10^{-7} to	<1	2.8×10^{-5} to	<1 to	1.1×10^{-4} to 4.1×10^{-3}	<10 to 62	
				1.3×10 ⁻⁵		1.1×10 ⁻³	20 to 1			
	East	V	Ingestion	—		—	—	9.3×10^{-3} to 1.7×10^{-2}	13 to 24	

Table R-5. Estimations of Dose and Dose Ratios for Monitored Offsite Groundwater, Surface Water, and Soil Concentration

¹ LeadSpread 7 was used to evaluate blood lead levels from potential environmental exposure to lead. LeadSpread is a software tool, developed by the California Department of Toxic Substances Control, to estimate blood lead concentrations resulting from lead exposure via dietary intake, drinking water, soil and dust ingestion, inhalation, and dermal contact. The above five pathways are added to obtain estimate of median blood lead concentration resulting from the multi-pathway exposure. Ninetieth, ninety-fifth, ninety-eighth, and ninety-ninth percentile concentrations are estimated from the median by assuming a log-normal distribution with a geometric standard deviation of 1.6. LeadSpread can be downloaded from

http://www.dtsc.ca.gov/AssessingRisk/leadspread.cfmhttp://www.dtsc.ca.gov/AssessingRisk/leadspread.cfm.

Chemical	Location	Medium	Pathway	Scenario						
				Recreational		Recreational Occupational		Residential		
				Dose (mg/kg-d)	Dose	Dose	Dose	Dose (mg/kg-d)	Dose Ratio	
					Ratio	(mg/kg-d)	Ratio			
Benzene	North	GW	Ingestion	1.4×10 ⁻⁷	<1	1.1×10^{-5}	1	4.5×10 ⁻⁵	3	
			Inhalation	_	_	_	_	2.2×10 ⁻⁴	6	
			Dermal	_	_	_	_	2.2×10 ⁻⁶	<1	
			Veg. ing.	—	—	—	_	5.5×10 ⁻⁵	3	
Carbon	North	GW	Ingestion	1.7×10 ⁻⁷	<1	1.4×10^{-5}	2	5.3×10 ⁻⁵	7	
tetrachloride			Inhalation	—	—	—	_	2.6×10 ⁻⁴	14	
			Dermal	—	—	—	_	2.9×10 ⁻⁶	1	
			Veg. ing.	—	—	—	_	4.1×10 ⁻⁵	5	
1,1-DCE	North	GW	Ingestion	7.2×10 ⁻⁷	<1	5.7×10 ⁻⁵	23	2.2×10^{-4}	89	
			Inhalation	—	—	—	_	1.1×10 ⁻³	200	
			Dermal	—	—	—	_	8.6×10 ⁻⁶	5	
			Veg. ing.	—	—	—	_	3.4×10 ⁻⁴	20	
Cis-1,2-DCE	Northeast	GW	Ingestion	2.38×10 ⁻⁶ to	<1	1.9×10^{-4} to	<1	8.0×10^{-4} to 1.7×10^{-2}	0 to 2	
				5.5×10 ⁻⁵		4.4×10^{-3}				
			Dermal					1.4×10^{-5} to 3.2×10^{-4}	<1	
			Veg. ing.		_	—		1.0×10^{-3} to 2.4×10^{-2}	0 to 2	

Notes: SW = surface water; GW = groundwater; S = soil; V = vegetation (plant material); Veg. ing. = ingestion of vegetation. Hazard indices were calculated for contaminants for which cancer potency factors were not available. These include manganese, cis-1,2-DCE, and perchlorate. In these cases the reference dose, a systemic toxicity health-based standard, was used to compare the doses. Dose ratios above unity represent potential exposure scenarios of concern.

* There is no evidence of perchlorate detection in edible plants. The indicated value is only provided to demonstrate a hypothetical case, since the Dayton canal flows into Orcutt Ranch (see also footnote b in Table 6-5 of Chapter 6).

Table R.6 Inhalation Dose Ratio (DR) Ranges ^a fo	or Lifetime Residents ((Since 1953)	Based on Max Recei	ntor Air Concentrations	$(A n pendix T)^{b}$
Table K-0. Initiation Dose Ratio (DR) Ranges R	JI LITERINE RESIDENTS	Since 1755)	Dascu on Max Rece	pior mi concentrations	(Appendix 1)

Receptor Location	Hydrazines and UDMH: Rocket Engine Testing (RET) and Thermal Treatment Facility (TTF)	TCE: Stripping Towers (ST) and Rocket Engine Testing (RET)
West Hills	2-14	47-314
Bell Canyon	3–35	40-241
Dayton Canyon	2-11	36-265
Simi Valley	0–4	30-229
Santa Susana Knolls	<0	10-75
Canoga Park	0–7	10-72
Chatsworth	0-1	8-72
Woodland Hills	0–8	7-74
Hidden Hills	0–3	30-86
Black Canyon	1-5	8-304
Sage Ranch (SR)	0-2	2-87
Brandeis Bardin Institute (BBI) ^c	1-3	17-503

Notes: *a.* Dose ratio = LADD/ALADD. *b.* Dose ratios are based on single to multiple source emissions.; DR calculations are presented in Appendix T). *c.* DRs for BBI were multiplied by 0.25 to reflect summer only residency. DRs for SR were multiplied by 2/7 to reflect weekend use only.

R-3. Exposure to Lead

The standard elevated blood lead level (BLL) for adults set by the Centers for Disease Control and Prevention is 25 μ g/dL of whole blood. This level recognizes that every adult has accumulated some lead contamination. The recommended BLL for a child is currently 10 μ g/dL of blood. For lead, which does not have consensus systemic or cancer standards, the LeadSpread 7 model (developed by the California Department of Toxic Substances Control) can be used to estimate potential blood lead levels and the associated Dose Ratios (DRs) from relevant offsite monitoring data (Table R-7). This model estimates potential blood lead levels resulting from exposure to lead via dietary intake, drinking water, soil and dust ingestion, inhalation, and dermal contact. The contributions via the above pathways are added to estimate the median blood lead concentration resulting from the multi-pathway exposure.

The LeadSpread 7 model calculations indicate that for Bell Canyon and the Chatsworth area, the blood lead in children could exceed the recommended health standard of 10 μ g/dL blood (Table R-7). For example, at the reported lead level of 383 mg/kg at a residence in Bell Canyon (see Appendix H, Table H-4), the LeadSpread results indicate, that pica children (children eating dirt) may have up to an estimated 13.7 μ g/dL and 19.5 μ g/dL lead BLL if they were playing outside every day, eating dirt, or eating food from gardens in areas with these lead levels. It is noted that recent monitoring of groundwater at the Chatsworth Reservoir (DWP, 2004) indicated groundwater lead levels of 59 to 2,239 μ g/L (Appendix H, Table H-5). LeadSpread calculations suggest that ingestion of untreated and undiluted groundwater from private wells in the areas between SSFL and the Chatsworth Reservoir could result in BLLs between 13 and 315 μ g/dL. The above scenario would be expected to occur if residents obtained their water from private wells and did not treat the groundwater before use or consumption. Unfortunately, the likelihood of occurrence of such exposure scenarios is unknown.

It should be noted that that Francek (1992) measured median soil-lead concentration in roadside soils of 280 mg/kg (range: 100 to 840 mg/kg), compared to 200 mg/kg (range: 100 to 220 mg/kg) in background soils. Elevated soil-lead levels are generally due to a combination of sources, it is often difficult to determine whether elevated soil-lead levels are a function of a point source emitter, lead-based paint, or leaded gasoline emissions (EPA, 1998). In addition, soil composition and background levels may vary substantially from region to region.^{R-3} Therefore, it is often difficult to identify the existence of a point source by determining if there is a decrease of lead concentration with distance from a suspected source. Although lead levels in soils offsite to SSFL have been found to exceed the recommended health standard of 10 µg/dl blood for children^{R-4}, given the limited monitoring of lead in offsite soils, it is not possible to determine the source of this lead contamination. It is plausible that some lead contamination is the result of various contributions included, but not limited to, past usage of leaded gasoline, lead-based paints, lead containing batteries, or potential transport with stormwater drainages from SSFL.^{R-5}

^{R-3} Lead soil levels at the Sodium Disposal Facility (a site of hazardous waste incineration) were detected up to 864 mg/kg (GRC, 1990); this soil sample was taken in 1987 at a depth of 0.5 to 1 foot. A soil sample at one Bell Canyon residence was determined to contain up to 383 mg/kg of lead (CA EPA, 1999). The Residential Soil Screening Level is 150 mg/kg.

^{R-4} Lead levels in Bell Canyon resulted in potential blood lead levels of up to 14 and 20 μ g/dL for children and soileating children, respectively.

^{R-5} Lead levels in stormwater runoff at NPDES Outfall 001 were measured at 40 μ g/L (MCL = 12 μ g/L) in 1995 analytes (Boeing, 1995).

Lead Level	Medium	Primary Exposure	Location	Blood	l Lead Le	d <i>Dose Ratios</i>	
		Route		Res	sidential]	Exposure	Occupational
				Adult	Child	^a Pica Child	Exposure
383 mg/kg	Soil	Soil ingestion	Bell Canyon	5	14	20	3
		-	residence	<1	1	2	<1
59–2239 μg/L	Groundwater	Groundwater	Chatsworth	9–273	13-315	16–317	8-271
		ingestion	Reservoir	<1-11	1-32	2-32	<1-11
50 µg/L	Groundwater	Groundwater	Woolsey	8	12	14	6
		ingestion	Canyon	<1	1	1	<1

Table R-7. Results from Evaluation of Offsite Lead Concentrations Surrounding SSFL

Notes: *a*. A pica child is a child (1 to 2 years old) who eats soil.

R-4. Exposure to Radionuclides

Offsite radionuclide monitoring data are insufficient to provide a reliable exposure analysis. It is also noted that high tritium levels—in excess of health-based standards—were recently detected in offsite groundwater northwest of Area IV. Despite the lack of monitoring data, an approximate analysis was undertaken by the study team with the results provided in Table R-8 with an indication of the likelihood of such exposures.

There is significant uncertainty in the estimated dose ratios (Table R-8) given that available offsite monitoring data are insufficient, monitoring techniques were deficient and background sample locations were inappropriate. Although dose ratios above unity were encountered, the potential exposure pathways leading to such exposures were highly conservative and in some cases unlikely to occur. For example, dose ratios above unity that were estimated for radiological contaminants detected in surface water NPDES outfalls were the consequence of ingestion of contaminated fish from recreational fishing. Although recreational fishing has been reported further downstream of these outfalls, it is not known to occur at the outfalls. Exposures of potential concern in the Ahmanson Ranch area include exposures to K-40 via crop, milk, or livestock ingestion. While such exposures may have been a concern in the past, this land has been recently designated open space and consequently the above exposure scenarios are unlikely. Exposures of concern at Brandeis-Bardin include intake of plutonium-238 via crop ingestion. However, the area in which this radionuclide was detected was sold to Rocketdyne for use as a buffer land, and hence does exposure via the above scenario is unlikely at present.

Table R-8. Offsite Radiological Contaminants

Chemical	Phase	Concentrat ion pCi/L (W) or pCi/g (S)	Year	Location / Sample ID	Ref	Is Exposure Likely?	Exposure Scenario/ Pathway	Dose Ratio
Radium (combined 226/228)	W	<500	1993	NPDES Outfall 002	2	Unlikely	Recreational/fish ingestion	30,000
Thorium-228	S	1.8	1998	Bell	3	Yes	Residential/crop ingestion	0.0021
				Canyon			Occupational/excavation	0.4
							Residential/incidental soil ingestion/inhalation	0.07
Thorium-232	S	1.5					Residential/crop ingestion	0.017
							Occupational/excavation	0.2
							Residential/incidental	0.44
							soil ingestion/inhalation	
Tritium	S	0.36					Occupational/excavation	0.000024
							Residential/incidental	0.000048
							soil ingestion/inhalation	
Potassium-40	S	8.3–23	2000	Ahmanson	1	Unlikely	Residential/crop ingestion	84
				Ranch		Yes	Occupational/excavation	0.13
Thorium-228	S	0.5-0.90				Unlikely as detected	Recreational/incidental	<<1
			-			0.5 ft depth.	soil ingestion/inhalation	
Thorium-232	S	0.54-0.97				Unlikely as detected	Recreational/incidental	<<1
	-		_			0.5 ft depth.	soil ingestion/inhalation	
Cesium-137	S	ND-0.32				Unlikely as detected	Recreational/incidental	<<1
		0.10.0.22	1000	DDI	-	0.5 ft depth.	soil ingestion/inhalation	1.6
Plutonium-238	S	0.19-0.22	1992	BBI	5	Unknown	Residential/	1.6
						37	crop ingestion	0.0004
		2.4. 2.0.	1002	0.01	2	Yes	Occupational/excavation	0.0004
Radium (total 226/228)	w	3.4 ± 3.8 to	1992-	Outfall	2	Unlikely	Recreational/	1400
	337	15 ± 25	1993	003-006				1200
Suontium-90	w	$3.1 \pm 3.7 \text{ to}$	1992-				fish ingestion	1200
Conjum 127	S	< 300	1993	Canaga	4	Vac		< <1
Cesium-15/	3	0.010-0.27	1997	Calloga Park SSFI	4	1 08	incidental soil ingestion/	<<1
				Recreation			inhalation	
				Center			matation	

Notes: ND = not detected * Background samples from Ogden, 1995. [†] DHS-based health comparisons. **Phase Designations:** W = water; S = soil; A = air. **Location Designations:** MW = monitoring wells at Las Virgenes Creek and East Las Virgenes Creek in Ahmanson Ranch; BBI = Brandeis-Bardin Institute. **Comments:** IDM = insensitive detection method.

References: 1. Klinefelder, 2000. 2 NPDES Annual Monitoring Reports. 3. Ogden Inc., 1998a. 4. Lawrence Livermore National Laboratory, 1997. 5. McLaren/Hart, 1993, 1995.